As m and n are even, m=2p and n=2q where $p,q\in\mathbb{Z}.$ Therefore,

$$m+n=2p+2q$$
$$=2(p+q),$$

is an even number.

As m and n are even, m=2p and n=2q where $p,q\in\mathbb{Z}.$ Therefore,

$$mn = (2p)(2q) = 4pq = 2(2pq),$$

is an even number.

As m and n are odd, m=2p+1 and n=2q+1 where $p,q\in\mathbb{Z}.$ Therefore,

$$m+n=(2p+1)+(2q+1) \ =2p+2q+2 \ =2(p+q+1),$$

is an even number.

As m is even and n is odd, m=2p and n=2q+1 where $p,q\in\mathbb{Z}$. Therefore,

$$mn=2p(2q+1)\ =2(2pq+p),$$

is an even number.

4 a If m is divisible by 3 and n is divisible by 7, then m=3p and n=7q where $p,q\in\mathbb{Z}$. Therefore,

$$mn = (3p)(7q)$$

= $21pq$,

is divisible by 21.

If m is divisible by 3 and n is divisible by 7, then m=3p and n=7q where $p,q\in\mathbb{Z}$. Therefore,

$$m^2 n = (3p)^2 (7q)$$

= $9p^2 (7q)$
= $63p^2q$

is divisible by 63.

If m and n are perfect squares then $m=a^2$ and $n=b^2$ for some $a,b\in\mathbb{Z}$. Therefore,

$$mn = (a^2)(b^2) = (ab)^2,$$

is also a perfect square.

Expanding both brackets gives,
$$(m+n)^2-(m-n)^2=m^2+2mn+n^2-(m^2-2mn+n^2) \ =m^2+2mn+n^2-m^2+2mn-n^2 \ =4mn,$$

which is divisible by 4.

(Method 1) If n is even then n^2 is even and 6n is even. Therefore the expression is of the form

$$even - even + odd = odd.$$

(Method 2) If n is even then n=2k where $k\in\mathbb{Z}$. Then

is odd.

8 (Method 1) If n is odd then n^2 is odd and 8n is even. Therefore the expression is of the form odd + even + odd = even.

(Method 2) If n is odd then n=2k+1 where $k\in\mathbb{Z}$. Then

$$n^{2} + 8n + 5 = (2k + 1)^{2} + 8(2k + 1) + 3$$

$$= 4k^{2} + 4k + 1 + 16k + 8 + 3$$

$$= 4k^{2} + 20k + 12$$

$$= 2(2k^{2} + 10k + 6).$$

is even.

9 First suppose n is even. Then $5n^2$ and 3n are both even. Therefore the expression is of the form even + even + odd = odd.

Now suppose n is odd. Then $5n^2$ and 3n are both odd. Therefore the expression is of the form

$$odd + odd + odd = odd$$
.

10 Firstly, if x > y then x - y > 0. Secondly, since x and y are positive, x + y > 0. Therefore,

$$x^{4} - y^{4} = (x^{2} - y^{2})(x^{2} + y^{2})$$

$$= (x - y)(x + y)(x^{2} + y^{2})$$

$$= (x - y)(x + y)(x^{2} + y^{2})$$

$$= (x - y)(x + y)(x^{2} + y^{2})$$

$$> 0.$$

Therefore, $x^4 > y^4$.

11 We have,

$$egin{aligned} x^2 + y^2 - 2xy &= x^2 - 2xy + y^2 \ &= (x - y)^2 \ &\geq 2xy. \end{aligned}$$

Therefore, $x^2+y^2\geq 2xy$.

12a We prove that Alice is a knave, and Bob is a knight.

Suppose Alice is a knight

- \Rightarrow Alice is telling the truth
- \Rightarrow Alice and Bob are both knaves
- ⇒ Alice is a knight and a knave This is impossible.
- ⇒ Alice is a knave
- ⇒ Alice is not telling the truth
- ⇒ Alice and Bob are not both knaves
- ⇒ Bob is a knight
- ⇒ Alice is a knave, and Bob is a knight
- **b** We prove that Alice is a knave, and Bob is a knight.

- ⇒ Alice is telling the truth
- ⇒ They are both of the same kind
- ⇒ Bob is a knight
- ⇒ Bob is lying
- ⇒ Bob is a knave
- \Rightarrow Bob is a knight and a knave.
 - This is impossible.
- ⇒ Alice is a knave
- ⇒ Alice is not telling the truth
- ⇒ Alice and Bob are of a different kind
- ⇒ Bob is a knight
- ⇒ Alice is a knave, and Bob is a knight
- **c** We will prove that Alice is a knight, and Bob is a knave.
 - Suppose Alice is a knave
 - ⇒ Alice is not telling the truth
 - ⇒ Bob is a knight
 - ⇒ Bob is telling the truth
 - ⇒ Neither of them are knaves
 - ⇒ Both of them are knights
 - ⇒ Alice is a knight and a knave This is impossible.
 - ⇒ Alice is a knight
 - ⇒ Alice is telling the truth
 - ⇒ Bob is a knave
 - ⇒ Bob is lying
 - ⇒ At least one of them is a knave
 - ⇒ Bob is a knave
 - ⇒ Alice is a knight, and Bob is a knave.
- In the diagram below, there are 11 yellow tiles. We can also count the yellow tiles by subtracting the number of red tiles, 5^2 , from the total number of tiles, 6^2 . Therefore $11 = 6^2 5^2$.

b Every odd number is of the form 2k+1 for some $k\in\mathbb{Z}$. Moreover,

$$(k+1)^2 - k^2 = k^2 + 2k + 1 - k^2$$

= $2k + 1$,

so that every odd number can be written as the difference of two squares.

c Since $101 = 2 \times 50 + 1$, we have, $51^2 - 50^2 = 101$.

$$\frac{9}{10} = \frac{99}{110}$$
 and $\frac{10}{11} = \frac{100}{110}$,

it is clear that

$$\frac{10}{11} > \frac{9}{10}$$
.

We have,

$$egin{aligned} rac{n}{n+1} - rac{n-1}{n} &= rac{n^2}{n(n+1)} - rac{n(n-1)}{n(n+1)} \ &= rac{n^2 - n(n-1)}{n(n+1)} \ &= rac{n^2 - n^2 + n}{n(n+1)} \ &= rac{1}{n(n+1)} \ &> 0 \end{aligned}$$

since n(n+1) > 0. Therefore,

$$\frac{n}{n+1} > \frac{n-1}{n}.$$

We have, 15a

$$\frac{1}{10} - \frac{1}{11} = \frac{11}{110} - \frac{10}{110}$$
$$= \frac{1}{110}$$
$$< \frac{1}{100},$$

since 110 > 100.

We have,
$$\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}$$

$$=\frac{n+1-n}{n(n+1)}$$

$$=\frac{1}{n(n+1)},$$

$$=\frac{1}{n^2+n},$$

$$<\frac{1}{n^2},$$

since $n^2 + n > n^2$.

16 We have,

$$\frac{a^2 + b^2}{2} - \left(\frac{a+b}{2}\right)^2 = \frac{a^2 + b^2}{2} - \frac{(a+b)^2}{4}$$

$$= \frac{2a^2 + 2b^2}{4} - \frac{a^2 + 2ab + b^2}{4}$$

$$= \frac{2a^2 + 2b^2 - a^2 - 2ab - b^2}{4}$$

$$= \frac{a^2 - 2ab + b^2}{4}$$

$$= \frac{(a-b)^2}{4}$$

$$\geq 0.$$

$$(x-y)(x^2+xy+y^2) = x^3+x^2y+xy^2-x^2y-xy^2-y^3 \ = x^3-y^3,$$

which is the difference of two cubes.

b Completing the square by treating y as a constant gives,

$$x^{2} + yx + y^{2} = x^{2} + yx + \frac{y^{2}}{4} - \frac{y^{2}}{4} + y^{2}$$

$$= \left(x^{2} + yx + \frac{y^{2}}{4}\right) + \frac{3y^{2}}{4}$$

$$= \left(x + \frac{y}{2}\right)^{2} + \frac{3y^{2}}{4}$$

$$\geq 0$$

c Firstly, if $x \geq y$ then $x - y \geq 0$. Therefore,

$$x^3-y^3=\overbrace{(x-y)(x^2+xy+y^2)}^{\geq 0}\ \geq 0.$$

Therefore, $x^3 > y^3$.

18a Let D be the distance to and from work. The time taken to get to work is D/12 and the time taken to get home from work is D/24. The total distance is 2D and the total time is

$$\frac{D}{12} + \frac{D}{24} = \frac{2D}{24} + \frac{D}{24} = \frac{3D}{24} = \frac{D}{8}$$

The average speed will then be

$$ext{distance} \div ext{time} = 2D \div rac{D}{8}$$

$$= 2D \times rac{8}{D}$$

$$= 16 \text{ km/hour.}$$

b Let D be the distance to and from work. The time taken to get to work is D/a and the time taken to get home from work is D/b. The total distance is 2D and the total time is

$$\frac{D}{a} + \frac{D}{b} = \frac{bD}{ab} + \frac{aD}{ab}$$
$$= \frac{aD + bD}{ab}$$
$$= \frac{(a+b)D}{ab}$$

The average speed will then be

$$egin{aligned} \operatorname{distance} \div & \operatorname{time} &= 2D \div rac{(a+b)D}{ab} \ &= 2D imes rac{ab}{(a+b)D} \ &= rac{2ab}{a+b} \; \mathrm{km/hour}. \end{aligned}$$

c We first note that a + b > 0. Secondly,

$$\begin{aligned} \frac{a+b}{2} - \frac{2ab}{a+b} &= \frac{(a+b)^2}{2(a+b)} - \frac{4ab}{2(a+b)} \\ &= \frac{(a+b)^2 - 4ab}{2(a+b)} \\ &= \frac{a^2 + 2ab + b^2 - 4ab}{2(a+b)} \\ &= \frac{a^2 - 2ab + b^2}{2(a+b)} \\ &= \frac{(a-b)^2}{2(a+b)} \\ &> 0 \end{aligned}$$

since $(a-b) \geq 0$ and a+b > 0. Therefore,

$$\frac{a+b}{2} \geq \frac{2ab}{a+b}.$$